Principles of Macroeconomics: Capital Flows and Exchange Rates
Class 13

Alex Houtz October 7, 2025

University of Notre Dame

Overview

- ► Announcements:
 - LC 18, GH 18 due Friday at 11:59pm
 - Practice Midterm on Canvas
 - Midterm: October 16 in class!
- ► Topics:
 - Balance of Payments
 - Exchange Rates
- ► Readings:
 - Chapters 18.1 18.3

Net Capital Inflows and the Trade Balance

► Remember this identity?

$$NCI = -(x - im)$$

- ► Why exactly is this the case?
 - I argued broadly when we covered investment that if we imported goods from a
 foreign country, then we must give that foreign country some financial asset (if we
 don't trade goods for goods)
 - Then usable capital is flowing into the United States and financial assets are flowing into Brazil, so the US has a positive net capital inflow.
- ► Let's look at a concrete example

Farming (from textbook)

Suppose we are farmers interacting with the world around us. Our transactions might look like:

	Sources of cash	Uses of cash	Net
Sales and purchases of goods and services	Artichoke sales: \$100,000	Farm operation and living expenses: \$110,000	- \$10,000
Interest payments	Interest received on bank account: \$500	Interest paid on mortgage: \$10,000	- \$9,500
Loans and deposits	Funds received from new loan: \$25,000	Funds deposited in bank: \$5,500	+ \$19,500
Total	\$125,500	\$125,500	\$0

We gain \$100,000 in sales and spend \$110,000 of it fixing the farm ("net exports"). We received \$500 in factor payments and paid out \$10,000 in factor payments ("factor income") We took out a loan to finance our farm, but still saved some money in assets ("financial account") The idea: every dollar has a source, and every dollar received goes somewhere

Going More In-Depth

- ▶ Net exports or trade balance: (x im)
- ightharpoonup Current account: (x im) + international transfers + international factor income
- ► Financial Account: Net asset acquisition net liability acquisition
- ► Capital account: one-time capital transfers (think forgiveness on a loan, not a payment) and non-produced, non-financial assets (think like usage of land rights)
 - This is small in practice
- ▶ Before, we had NCI = -NX. But we've added transfer payments and factor income. The identity now is: CA + KA = -FA
 - Since KA is very small, $CA \approx -FA$
 - Why is this true? Because of the same reasoning from farming every dollar received goes somewhere and every dollar has a source
- ▶ If we could perfectly account for all transactions, this identity would hold true

For the US, 2025Q2, Millions of Dollars

		Payments from foreigners	Payments to foreigners	Net
1	Sales and purchases of goods and services	851,826	1,042,218	-190,392
2	Factor income	376,087	383,772	-7,685
3	Transfers	45,935	99,170	-53,235
Cı				-251,312
4	Asset sales and purchases	653,406	220,644	406,916
Fi	nancial account (4)			406,916
Ne	et non-produced, non-financial assets (5)	16	1,922	-1,906
Ca	pital Account (5)			
				-1,906
St	atistical discrepancy			-153,698

In Circular Flow

Tying the Financial Account to NCI

- ► NCI is defined as the amount of foreign savings that are available to finance domestic investment
- ▶ Remember investment and saving? We made a lot of simplifying assumptions
 - We assumed that all international capital flows were loans. In reality, there's foreign stock, foreign real estate, direct foreign investment, etc.
 - We assumed that something called exchange rates were inconsequential (will relax shortly)
- ▶ With those simplifications, comes a prediction: if it is easy for countries to lend across boarders (and there's similar risk levels), interest rates will equalize across countries
 - Capital moves from places where capital is cheap to places where capital is expensive

Why are Interest Rates Different Between Countries?

- lacktriangle High growth \longrightarrow higher demand for capital \longrightarrow higher returns to investment
- lacktriangle Difference in savings rate high government debt \longrightarrow higher NCI
- ► Suppose demand for loanable funds is high then interest rates are higher, which makes foreign investment more attractive (high NCI)
- ► Example: early 20th century
 - Britain slow growth, low interest rates, capital outflow
 - US high growth, high interest rates, capital inflow

Gross Capital Flows

- ▶ Note, we have been talking about net capital flows But what about *gross* flows?
 - In reality, the US buys foreign assets and sells assets. Why?
- ► Investors seek more than just the highest rate of return
 - Diversification US investors seeks to reduce risk by investing in Europe, European investors seek to reduce risk by investing in the US
 - Companies try to optimize where each part of their product is constructed think computers made in Korea but the car chassis is constructed in Germany
 - Some places are centers for banking New York or London for example because they are safe and reliable

But How Do These Countries Actually Trade?

- ► Many countries exist → many currencies exist
- ► UN says 180 different currencies
- ► There are 5 big currencies:
 - (1) US Dollar
 - (2) Euro
 - (3) Japanese Yen
 - (4) Swiss Franc
 - (5) UK Pound
- ► These are traded in the foreign exchange (FX) market
- ▶ \$7.5 trillion in transactions everyday as of April 2022
- ► Banks trade everyday

The Exchange Rate

- ▶ How do we know how many US Dollars a Euro is worth?
- ► We call the price of one currency in terms of another the exchange rate
- ► As of October 7, 2025, one dollar is worth 0.86 Euros
 - Or, one Euro is worth 1.17 dollars
- ► Notation:

$$E_{\text{e}/\$} = \frac{0.86\text{e}}{1\$}$$
 $E_{\text{e}/\text{e}} = \frac{1.17\$}{1\text{e}}$

Dollars to Euros Over Time

Supply and Demand in the FX Market

- ► First, who trades in the FX Market?
 - (1) People who purchase goods
 - (2) People who purchase services
 - (3) Governments who want to manage exchange rates
- ► Money is a medium of exchange
 - Every time firms export/import or investors move want to invest abroad, we need to do currency conversion
 - ullet People who want to buy in the US want to buy in dollars \longrightarrow demand for dollars
 - Example: Europeans who want to buy dollars, sell euros
 - ullet People who want to sell dollars \longrightarrow supply for dollars
 - Americans who want to buy Euros, sell dollars

Graphically

Shifting Equilibrium

- ► What happens if demand for dollars increases?
 - Then the dollar has become more value the dollar has appreciated in value relative to the Euro
 - At the same time, the Euro has depreciated in value relative to the dollar
- ▶ So what? Well, most of us probably think in terms of money prices when thinking about goods
 - How much does a MacBook Pro cost? \$1599
 - To a European, this costs: 0.86 × 1599 ≈ €1375
- ▶ What if the euro appreciates relative to the dollar, say now one dollar can buy 0.75 euro?

$$0.75 \times 1599 \approx$$

▶ Or what if the euro depreciates, say to 1.1 euro per dollar? Then:

But What About "Real"ity?

➤ So far, this has been the nominal exchange rate. Now, we want to think about the real exchange rate. Divide by the relative price level:

$$q_{US/Eur} = \frac{E_{\$/\leqslant}P_{Eur}}{P_{US}}$$

- $ightharpoonup P_{Eur}$ is the price level in Europe (in euros)
- $ightharpoonup P_{US}$ is the price level in the US (in dollars)
- ▶ If $\uparrow q_{US/Eur}$ \longrightarrow European goods are relatively more expensive
 - US imports decrease: European goods get expensive for Americans
 - US exports increase: US goods are relatively cheaper for Europeans
 - ullet As such: "weak dollar" \longrightarrow good for exporters, bad for importers
- ► Similar logic holds for a decline in $q_{US/Eur}$

Summary

- ► Balance of Payments
- ► Exchange rates
 - Why might countries want to manipulate their exchange rates?
- ► Remember: homework due Friday night
- ► Read chapters 18.1 18.3
- ► Practice Midterm